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1 Multiband quantum transport in tunnel devices

In this section, we will describe a tight-binding (TB)-based transfer matrix approach

used to calculate the proper scattering states of an heterostructure system [1]. TB

models for the materials constituting the heterostructure allow to obtain a complete full-

band description of the whole Brillouin zone of the interface plane and to relax all the

envelope function approximations usually made for the treatment of tunneling problems

in heterostructures.

1.1 Quantun transmitting boundary method

In this approach, the transmission matrix is determined in terms of an extended transfer-

matrix method within the tight-binding framework [2] [5] [8] [9] [10] [11].

This method, called (multiband) Quantum Transmitting Boundary Method (QTBM )

is a numerically stable and efficient method for computing transmission coefficients in

semiconductor heterostructures using (multiband) band structure models. It has been

successfully implemented for the empirical tight-binding model, the effective bond or-

bital, the k · p model, and the pseudopotential method and has been used extensively in

the investigation of band structure effects such as valley mixing and band mixing.

The flexibility of the method allows to examine a variety of physical phenomena relevant

to quantum transport, including alloy disorder, interface roughness, defect impurities,

and 0D, 1D, and 2D quantum confinement, in device geometries ranging from double

barrier heterostructures to quantum wire electron waveguides and MOS tunnel struc-

tures with non-uniform ultra-thin oxide layers.

Fig. 1 shows the energy band diagram of a typical heterostructure on which we wish to

perform scattering calculations. The device structure consists of a central active region

sandwiched between flat-band electrode regions to the left and right. The scattering
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Figure 1: Scheme of the energy band diagram of a generic double barrier heterostructure.

problem just described is traditionally solved using the transfer matrix method.

The major drawback of the transfer matrix method lies in its inherent numerical insta-

bility. While this is typically not an issue in 1D single-band implementations, it can be

a major concern for multiband and 3D applications.

The quantum transmitting boundary method dispenses with transfer matrices entirely.

QTBM is a local basis method, suitable for tight-binding band structure models as well

as discretized (finite difference or finite element) plane wave basis models.

1.2 Multiband method for the empirical tight-binding model

The multiband quantum transmitting boundary method (MQTBM ) is a multiband

generalization of the one-band quantum transmitting boundary method. Compared to

the transfer matrix method, the MQTBM is equal in numerical efficiency, and superior

in numerical stability and ease of implementation. Here is a description of MQTBM for

the empirical tight-binding model [8].
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Let’s consider a generic tunnel heterostructure device. For convenience we vertically

subdivide the whole device into three sections: a central region of interest made by N

monolayers (s = 1, 2, ..., N) and two semi-infinite flat-band regions on the left and on the

right, corresponding to the incoming and outgoing electrons. These are considered suffi-

ciently far from the heterointerface so that the potential and compositions are constant

and the wavefunction can be described in terms of bulklike plane-wave states. In general,

the transfer-matrix procedure consists in relating the amplitudes of the incoming plane

wave states to the transmitted ones. In the tight-binding framework, the amplitudes are

translated, with an opportune basis transformation, into coefficients of tight-binding or-

bitals. Let M be the number of orbitals per unit cell in the chosen tight-binding basis set.

The basis orbitals may be written in the form
∣∣∣R‖sα

〉
, where s is the monolayer label,R‖

is the in plane component of unit cell coordinate and α labels the orbitals within a unit

cell. Let’s consider now a planar orbital formed by taking Bloch sums of tight-binding

orbitals over the N‖ unit cells in a generical monolayer :

∣∣∣sα,k‖
〉

=
1√
N‖

∑

R‖

exp(ik‖ ·R‖)
∣∣∣R‖sα

〉
(1)

Then, since k‖ is a good quantum number, the wave-function can be expanded as a

linear combination of these planar orbitals:

|ψ〉 =
∑
s,α

Csα

∣∣∣sα,k‖
〉

(2)

The coefficients of this expansion must satisfy the Schrödinger equation, written in

the planar orbital basis :

(Hs,s − E) Cs + Hs,s−1Cs−1 + Hs,s+1Cs+1 = 0 (3)
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where Hs,s and Hs,s−1 , Hs,s+1 are respectively the intra- and interslice bulk Hamilto-

nian matrices for the left bulk. The dimension M of the vector Cs is determined by the

number of orbitals within the lateral unit cell . Analogous equations hold for the right

bulk. Equation 3 can be written in the transfer matrix form :



−H−1

s,s−1(Hs,s − E) −H−1
s,s−1Hs,s+1

1 0







Cs

Cs+1


 = Γs




Cs

Cs+1


 =




Cs−1

Cs


 (4)

where Γs is the transfer matrix for a single layer. The boundary conditions can be

described in the bulk-state basis by choosing the correct form for the wave function in the

left and right regions, that is such that there is a known incoming plane-wave state from

the left region, no incoming states from the right, and unknown outgoing transmitted

and reflected states in the right and left regions. These conditions can be translated into

the tight-binding basis by means of a basis transformation which relates the coefficients

of the in-coming, reflected, and transmitted plane-waves, respectively I, r,and t, to the

tight-binding coefficients at the boundaries of the central region




C1

C2


 = DL




I

r


 =




DL
11 DL

12

DL
21 DL

22







I

r


 (5)




CN−1

CN


 = DR




t

0


 =




DR
11 DR

12

DR
21 DR

22







t

0


 (6)

DL and DR are 2M x 2M matrices whose column vectors are the eigenvectors obtained

by diagonalizing the bulk transfer matrices in the left and right electrodes. In this bulk

regions, in fact, the TB coefficients must satisfy the Bloch condition for near slices :

Cs = eikzdzCs−1 (7)
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where d is the distance between monolayers and kz is the component of the crystal

momentum along the growth direction.

Applying the condition (7) to Eq.4 , it is possible to set up a generalized eigenvalue

equation of dimension 2N × 2N that does not involve inverse of Hs,s+1 [3, 4] :



(Hs,s − E) Hs,s+1

I 0







Cs

Cs+1


 = e−ik⊥·d⊥



−Hs,s−1 0

0 I







Cs

Cs+1


 . (8)

whose solutions are a set of 2M complex wave vectors. They correspond to bulk states

which propagate or decay to the right and to the left. In the left and right regions the

wave function can be expressed, respectively , as:

|ψ; L〉 =
M∑

j=1

(Ij |k⊥,j; L〉+ rj |k⊥,j+M ; L〉) (9)

|ψ; R〉 =
M∑

j=1

tj |k⊥,j; R〉 (10)

where |k⊥,j; L〉 and |k⊥,j; R〉 are the bulk complex band states in the left and right

regions, respectively , and the coefficients {Ij} , {rj} and {tj} represent the known

incoming states, the reflected and the transmitted components.

Since the eigenvectors of Eq.8 occur in pairs (k⊥,−k⊥), we have exactly N in-coming

solutions and N out-going solutions.

In Fig. 2 the GaAs complex band structure in the [001] direction is calculated by

solving the eigenvalue equation (8) with the spin-sp3s∗ ETB model. We notice that the

light hole band is connected with the lower conduction band, while heavy and split–off

hole bands are connected with higher energy conduction bands. The curvature in the

imaginary plane defines the decay constant in a typical tunneling problem. Thus, a pre-

cise description over the whole complex k space is crucial for tunneling based devices.
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Figure 2: Tight–binding complex band structure of GaAs. The thick lines refer to real

bands, while the thin lines are related to complex values of the kz vector.

In the classical transfer-matrix method, by means of the repeated application of trans-

fer matrices (4), one can relate the TB coefficients of left and right bulks to each other ,

and so obtain the transmission amplitude t. Using this method with realistic multiband

band-structure models arises numerical instability problems, when large devices are con-

sidered.

To avoid these instabilities, one can bypass transfer matrices completely, by eliminating

the unknowns r,and t from the two equations. In this way, we obtain the quantum trans-

mitting boundary condition and the problem is reduced to a system of linear equations

with only the TB coefficients as the unknowns.

After the inversion of matrix D, the boundary conditions can be written in this way :

[(
D−1

L

)
11

(
D−1

L

)
12

]



C1

C2


 = I (11)

[(
D−1

R

)
21

(
D−1

R

)
22

]



CN−1

CN


 = 0 (12)

These two boundary equations, together with Eq.3, constitute a tridiagonal system of
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MN linear equations which can be written in the matrix form as :




(D−1
L )11 (D−1

L )12 0 · · · · · · · · · 0

H2,1 H̄2,2 H2,3 0 · · · · · · 0

0 H3,2 H̄3,3 H3,4 0 · · · 0
...

. . . . . . . . .
...

...

0 0 HN−1,N−2 H̄N−1,N−1 HN−1,N

0 · · · · · · · · · 0 (D−1
R )21 (D−1

R )22







C1

C2

C3

...

CN−1

CN




=




I

0

0
...

0

0




(13)

Solving the system one gets the TB coefficients and from these the amplitude of

transmitted and reflected states are easily calculated :

t =
[(

D−1
R

)
11

(
D−1

R

)
12

]



CN−1

CN


 (14)

r =
[(

D−1
L

)
21

(
D−1

L

)
22

]



C1

C2


 (15)

In turn, from t the transmission coefficient can be computed:

T (E,k‖) =
M∑

j=1

∣∣∣tj(E,k‖)
∣∣∣
2

∣∣∣vj(E,k‖; R)
∣∣∣

∣∣∣vI(E,k‖; L)
∣∣∣

(16)

where vI(E,k‖; L) and vj(E,k‖; R) are the group velocities of the incident and the

transmitted bulk plane-wave states, respectively.

The current density is then calculated integrating for k‖ in the projected Brillouin

zone and for all the energy values, with the Landauer-Büttiker expression [6] [7] :

J =
−e

4π3h̄

∫

BZ//

dk//

∫
T

(
E,k//

)
[fR (E,EFR)− fL (E,EFL)] dE (17)
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where T (E, k||) is the transmission coefficient, BZ|| is the two dimensional Brillouin zone,

EFL the quasi-Fermi level in the left bulk and EFR the quasi-Fermi level in the right

bulk .

Note that MQTBM (or QTBM in general) does not specify how the system of the

linear equations should be solved; it merely formulates the physical problem into a set of

mathematical equations which can be solved using readily available numerical routines.

This is in contrast to the transfer matrix method which not only provides the formu-

lation, but also specifies the solution algorithm, which, unfortunately, is numerically

unstable.

In conclusion, QTBM has the following advantages:

(1) Simplicity. QTBM is extremely simple to implement: the basic QTBM equa-

tions consist simply of the effective mass Schrödinger equation in tight-binding or finite-

element form for the active region, plus a pair of boundary equations specifying the

scattering boundary condition.

(2) Numerical stability. QTBM allows the user to choose the most stable and efficient

numerical algorithm. Note that a poor choice such as back substitution, can of course

lead to instabilities.

(3) Numerical efficiency. At first glance, the transfer matrix method would appear

to be more efficient, dealing with 2 x 2 matrices rather than the large N x N matrix in

QTBM. However, the QTBM matrix is extremely sparse, and the use of sparse matrix

algorithms leads to computational and storage efficiencies equaling that of the transfer

matrix method.
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2 HETERO simulation code for calculation of tun-

neling properties in heterostructures

2.1 Introduction

HETERO simulation code is an implementation of Quantun Transmitting Boundary

Method for the calculation of multiband quantum transport in tunnel devices.

It can be applied to Resonant Tunnel Diodes (RTD) as well as to other structures imply-

ing some kind of tunnel transport, such as Metal-Oxide-Semiconductor (MOS) diodes,

provided that a complete atomistic and tight-binding (TB) description of the device or

structure is given. Only coherent tunneling is taken in account in these calculations, so

no phonon scattering can be considered. On the other hand, defect or trap assisted tun-

neling can be studied, by introducing purposely some dangling bonds in the atomic basis

of the structure. Besides, it must be noted that the code allows the integration of trans-

mission coefficient on all the 2D Brillouin zone and it’s not limited to the Gamma point

contribution; this is of fundamental importance for the Tunneling Current calculation.

Two main kinds of information are required in input by the code:

1. An atomic structure description of the heterostructure under exam.

2. A set of TB parameters valid for the constituent materials of the heterostructure.

The program is executed with this command:

hetero input_file_name
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where input file name is the name of the input file: a text file including all the relevant

information for the code to run.

In the following, we will see in details how to write the input file which is read by hetero

and will discuss how to run a simulation in the appropriate way.

2.2 Atomic basis definition

The atomic structure must consist of a list of atoms, each followed by their xyz coor-

dinates. This representation has to be consistent with a set of three primitive lattice

vectors. Two of them define the lateral cell which corresponds to the periodicity of the

structure in the xy plane. In the z direction, which is taken as the growth direction of

the heterostructure, and so also as the direction along which tunneling takes place, there

is of course no periodicity. The third vector is therefore to be considered meaningful

only for the two bulk materials placed at the two contact regions of the device.

In the lattice section of the input file, first the primitive lattice vectors are defined (in

nm), with the following format: primII is the couple of vectors which lie in the plane of

the heterojunction; the next two ( prim3L and prim3R) define the third primitive lattice

vectors corresponding respectively to the left and right bulk.

$lattice

primII = 0.5430 0.00000 0.00000

0.00000 0.5430 0.00000

prim3L = 0.00000 0.00000 0.543000

prim3R = 0.00000 0.00000 0.543000

Then, after the keyword ”device basis”, the complete atom basis of the heterostructure

is defined, with this format:
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Atom name, Atom number, Plane, Insulator, Position(3).

Plane is the order number of the crystal layer: it must be noted that the first and the

last plane should be a basis of each bulk material;

Insulator is a flag (.false. or .true.) which determines whether that atom belongs or not

to an ” Insulator” material. This label will be explained in the following section about

current calculation.

Finally, the atom coordinates are entered, in the format x , y, z (in nm)

device_basis =

"Sil" 1 1 .false. 0.4764296 0.2057682 -0.50050

"Sil" 2 1 .false. 0.2049289 0.4772689 -0.50050

"Sil" 3 1 .false. 0.0691927 0.0700178 -0.364750

"Sil" 4 1 .false. 0.3406793 0.3415185 -0.364750

"Sil" 5 1 .false. 0.2049289 0.2057682 -0.229000

"Sil" 6 1 .false. 0.4764296 0.4772548 -0.229000

..................................................

$end

The device should in fact be designed in this way:

• One left contact region, constituted by a bulk material (usually with a supercell

basis)

• The ”device” region, where tunneling takes place

• One right contact region, constituted by a bulk material

Since the two bulk contact layers are seen by the code as infinite reservoirs, it’s not

important their thickness, which usually corresponds to that of a supercell of the given

11



material. Of course, most important is the thicknesses of the layer(s) in the device region,

which mainly determine the tunneling.

2.3 TB parameters

Depending on the TB parameterization which has been chosen, the related states and

couplings have to be declared, for each atom species, in the section states and used couplings.

Here, after the keyword atom states each atom name is followed by the list of used cou-

plings in the order s, p, d, s∗ (use a dot for unused couplings).

$states_and_used_couplings

atom_states =

"Sil" ’s’ ’p’ ’d’ ’se’

"Si" ’s’ ’p’ ’.’ ’.’

"Ox" ’s’ ’p’ ’.’ ’.’

used_couplings =

"sss" "sps" "pss" "pps" "ppp" "s*ps" "ps*s"

"s*s*s" "s*ss" "ss*s" "sds" "dss" "s*ds" "ds*s" "pds"

"dps" "pdp" "dpp" "dds" "ddp" "ddd"

max_nr_stars = 1

$end

In this example, we declare the states used for a heterostructure Si/SiO2, where

Silicon (”Sil”) has a sp3s∗d representation, while SiO2 (atoms ”Si” and ”Ox”) has a
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sp3 basis. In the following, the relevant couplings for our heterostructure are listed

(used couplings) and the maximum number of stars (max nr stars) is put to 1, which

means that only first neighbours interactions will be considered.

As for the TB parameters, two sets of values have to be entered: the on-site energies,

required for each atom species present in the basis, and the TB couplings between dif-

ferent atom types. On-site energies are included in the related section , onsite energy ,

as in the following example:

$onsite_energy

"Sil" -2.0196 4.5448 14.1836 19.6748

"Si" 1.397 4.497 99.00 99.00

"Ox" -20.503 -5.703 99.00 99.00

$end

where the atom name is entered , followed by the onsite energies list, in the order

s,p,d,s∗ and in eV (every state must be given, even if it is not used).

It must be noted that, for a heterostructure, the conduction (or valence) band disconti-

nuity between different material layers must be taken in account in the correct way. Since

TB parameters are usually given for a bulk material, the on-site energies must be shifted

of the appropriate quantity, in order to get the correct band offset at the heterointerfaces.

TB couplings are listed in the section tb couplings, with the following format: Atom

name1, Atom name2, Star, max coupling distance, list of tb couplings.

$tb_couplings

"Sil" "Sil" 1 0.25 -1.9413 2.7836 2.7836 4.1068 -1.5934 2.8428

2.8428 -3.3081 -1.6933 -1.6933 -2.7998 -2.7998 -0.7003 -0.7003
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-2.1073 -2.1073 1.9977 1.9977 -1.2327 2.5145 -2.4734

"Ox" "Si" 1 0.20 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"Ox" "Ox" 1 0.28 0.0000 0.0000 0.0000 0.56 -0.13 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

$end

Star : A star is defined as the set of all atoms that have the same distance d from a

given basis atom. Here, the parameter star defines how many stars are calculated: if we

specify ”1” , all the first nearest neighbours are considered;

max coupling distance defines the maximum distance which can separate two atoms for

them to be still considered as first neighbours (can be useful in case of strain or lattice

mismatch) ;

list of tb couplings must be given in the same order as in the section states and couplings

Finally, in the section distance dependence, it is possible to enter the dependence of

TB coupling parameters on bond length, according to a generalization of Harrison scaling

law Vi,i′(di,i′) = Vi,i′(d
0
i,i′) · (

d0
i,i′

di,i′
)
η

where Vi,i′ is the coupling integral between atoms i and

i′ and di,i′(d
0
i,i′) is the strained (unstrained) interatomic distance.

The parameters η are orbital-dependent exponents. They can be included in this section:

$distance_dependence

$end
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according to the following format:

Atom name 1, Atom name 2, Star, reference distance[nm], power.

”reference distance” is the unstrained interatomic distance for that couple of atoms;

”power” is the value of η for that coupling.

2.4 Simulation Control

In this paragraph we will examine the input parameters required to control the simula-

tion and specify the kind of calculations to be performed.

After a ”subject” section, dedicated to give a name and some comments to the input

file, in the general section it is possible to set some very general simulation parameters.

$general

program_version = 1.32

fuzzyequal = .true.

fuzzyness_in_percent = 20.0

calculate_lattice_only = .false.

calculate_bandstructure = .false.

chatty = 2

$end

fuzzyequal and fuzzyness in percent are used to set a tolerance in the lattice structure.

Namely, if fuzzyequal is .true., all the atoms with a displacement within the percentage
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specified in fuzzyness in percent from the unstrained position, are considered still be-

longing to the same star. This allows to consider the crystal lattice as periodical, even

in case of strain and displacements in the lattice positions.

calculate lattice only , if .true., limits the simulation to calculate only the lattice struc-

ture. This can be very useful at the beginning of a device design, since it allows to

determine the presence of dangling bonds or errors in the description of the basis.

calculate bandstructure : if .true., the program calculates the bulk bandstructure for

the first or last plane, as specified in bandstructure section.

chatty : 0,1,2,3,4 specifies the level of information in output during execution.

In the section general heterostructure, the control parameters for the tunneling calcu-

lation can be set up.

$general_heterostructure

calculate_bound_states = .false.

calculate_current = .true.

calculate_special_initial_k = .false.

calculate_I_U_character = .true.

calculate_kii_scan = .false.

calculate_E_scan = .false.

integrated_E = .false.

integrated_kII = .false.

BEEM_experiment = .false.

special_initial_energy = 4.0
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special_initial_kII = 0.0 0.0001 0.0

$end

In general, the simulation code allows one to calculate Transmission Coefficient and

Tunneling current through the heterostructure. Regarding calculation of Transmission

Coefficient T, three different modes of operation are available:

1. Calculation of T as a function of energy, for a given single k|| point in the 2D

Brillouin zone.

2. Calculation of T as a function of energy, with T being integrated on the whole 2D

Brillouin zone.

3. Calculation of T for a fixed energy value and for a grid of k-points: in this way a

picture of the transmission in the first 2D Brillouin zone can be obtained.

As for tunneling current, I/V characteristic is obtained in output, depending on the

applied voltage between the two terminals of the system.

The previous options can be selected by switching the following flags in section

general heterostructure:

• calculate current : determines if a k||-space and energy integration is performed,

as specified in the tunneling current section;

• calculate I U character : If .true. and calculate current is .true., the current den-

sities for the range of voltage given in I U character will be calculated.
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• calculate special initial k : Calculates the transmission amplitude for a special k||

as given by special initial kII (format : kx , ky, kz [nm−1] ).

• calculate E scan : performs calculation of T, scanning an energy range given by

special initial energy (starting from quasi Fermi level energy, see tunneling current

section).

• calculate kii scan: performs the calculation of T for a fixed energy value, given

by special initial energy , and for a grid of k-points, given by k II steps in section

tunneling current. The result is a scan of T in the 2D Brillouin zone.

• integrated kII : If calculate E scan is .true., performs the calculation of integrated

Transmission coefficient, where integration is made on the 2D Brillouin zone, with

a number of k-points given by k II steps in section tunneling current.

• integrated E , calculate bound states, BEEM experiment : not implemented.

The bandstructure section allows the calculation of the band structure of the left or

the right bulk (only if calculate bandstructure in the general section is .true.).

If left bulk is .true., the program calculates the band-structure of plane nr. 1 using

primII,prim3L as primitive lattice vectors.

If right bulk is .true., the program calculates the band-structure of the last plane using

primII,prim3R as primitive lattice vectors.

lower energy limit, upper energy limit : define the range of energy for the band-structure.

k3 file is the name of the file containing the k-vectors at which the band-structure should
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be calculated. Format of the file :

total nr of k-points

nr-k-point k1 k2 k3

.....

where k1 and k2 are in plane wavevectors , k3 is the orthogonal wavevector i.e. in growth

direction. All wavevectors are in units of reciprocal primitive lattice vectors.

2.5 Tunneling current calculation

The tunneling current section allows to control the tunneling current calculation.

$tunneling_current

calculate_three_pole_device = .false.

basis_emitter_voltage = 0.0

basis_atom_basis = 38

quasi_fermi_energy_L = 1.241

quasi_fermi_energy_B = 1.241

quasi_fermi_energy_R = 0.30

base_fermi_cutoff = .false.

plane_symmetry = 9

temperature = 300.0

cutoff_energy_diff = 0.180

energy_step = 0.005

energy_min_step = 0.0001

k_II_steps = 50
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adaptive_kII_grid = .true.

nr_subgrids = 6

focus_point_only = .false.

focus_point = 0.0 0.0

focus_point_radius = 0.12

$end

To calculate the current density in the device (only performed for calculate current =

.true. ), an integration over the energy interval from (quasi fermi energy R-cutoff energy diff

) to (quasi fermi energy L+ cutoff energy diff ) is performed. That is, the energy interval

is defined by quasi-Fermi energy (in eV) in left (L) and right (R) bulk layers, and by a

cutoff energy.

energy step is the stepsize for energy integration; the stepsize will be decreased to

energy min step/2 (sometimes down to energy min steps/4) if the transmission ampli-

tude is close to a peak.

For each energy a 2D integration over k|| is performed with k II steps in each direc-

tion. k II steps defines the equivalent nr. of points in each direction of the projection of

the BZ over which the (integrated) transmission is sampled. The actual nr. of calculated

points can be well below (k II steps)2 if the BZ-projection posesses high symmetry.

A possible Cn symmetry along the growth axis may speed up the last summation signif-

icantly.

plane symmetry gives the 2D-symmetry of the heterostructure in growth direction.

Possible values:
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0 : No symmetry, full BZ-integration

2 : C2, i.e. a 180-degree rotation symmetry along growth axis. The in plane primitive

lattice vectors must be of equal length and enclose 180deg.

3 : C3, i.e. a 120-degree rotation symmetry along growth axis. The in plane prim latt.

vec must be of equal length and enclose 120deg. e.g. (1,0,-1) and (-1,1,0)

4 : C4, i.e. a 90-degree rotation symmetry along growth axis. The in plane prim latt.

vec must be of equal length and enclose 90deg.

6 : C6, i.e. a 60-degree rotation symmetry along growth axis. The in plane prim latt.

vec must be of equal length and enclose 120deg.

7 : C3v, a 120-degree rotation symmetry and three mirror planes that contain the basis

vectors.

8 : C6v, a 60-degree rotation symmetry and six mirror planes that contain the basis

vectors.

9 : C2v, a 180-degree rotation symmetry and one mirror plane that lies in the middle

between two primitive translations (Diamond-(100) )

10 : C4v, a 90-degree rotation symmetry and a mirror plane that lies in the middle

between two primitive translations (Flourite-(100)), fcc-(100).

adaptive kII grid : If this parameter is set to true, a denser grid is created with addi-

tional gridpoints between those given by k II steps. These are only calculated if a high

transmission is nearby.

nr subgrids : If adaptive kII grid is true, between two coarse gridpoints given by

k II steps there will be
√

2
(nr subgrids)

additional points, but only some of them will be

calculated. The use of these parameters cause an exponential growth in the computa-

tional time, so it is advisable not to choose too high values (suggested value: 3)

21



temperature: gives the system temperature; it affects only the Fermi-Distribution cal-

culation.

Calculate three pole device specifies if the device to be calculated has three and not

only two leads. If this flag is true, the two following parameters basis atom basis and

quasi fermi energy B are meaningful.

basis atom basis determines a basis atom that belongs to the base terminal of the

three pole device (eg. Transistor)

quasi fermi energy B gives the quasi-fermi energy of the transistor base.

focus point only : if true, scanning of k-space in the 2D Brillouin zone, if requested, is

limited to a specific region, defined by focus point ( kx , ky in nm−1), that is the center

of the region, and by focus point radius, that is the radius of the region.

In the section I U character, one can define parameters for IV characteristic :

voltage range (starting voltage , end voltage) and voltage step. If calculate I U character

is .true., the current density as a function of the applied voltage is calculated for the

heterostructure.

$I_U_character

start_voltage = 0.80

end_voltage = 4.0

voltage_step = 0.1
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$end

The calculation of current is performed in the following way.

A voltage drop, defined by the voltage step in I U character, is applied to the device

structure described in lattice section. It is assumed that all the applied voltage drops in

the ”device” region, which is defined by the basis atoms whose label insulator , in the

section device basis, is set to true. No voltage drop occurs in the regions whose basis

atoms have insulator set to false; usually, the left and right bulk contact regions are

defined in this way.

In the region considered as insulator, a linear potential drop is assumed, which is im-

plemented with a shift of TB on-site energies of the related atoms. Then, transmission

coefficient T (E, k||) is calculated with the new TB parameters and tunneling current is

found integrating T on energy and k|| . This procedure is repeated for all the voltage

steps, giving the final IV characteristic.

2.6 HETERO implementation for ICODE

For usage in the ICODE web site, a few modifications have been made to the I/O

section of the code. Basically, the simulation control sections have been separated from

the atom basis and TB parameters definition, in order to let the user run a simulation

on a RTD or MOS structure in a quickly way, with no need to define manually the basis

structure. On ICODE, in fact, the basis structure is generated automatically by the

code, according to the device geometrical parameters in user’s input.

The user has, anyway, the option to edit his own input file for HETERO, which can be

run from ICODE simulator applet.
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In this case the input file for HETERO, which must have the name hetero.in, has the

following format (see also the example in Appendix A).

The sections subject, general, general heterostructure, I U character, bandstructure are

exactly as described above. In tunneling current section, quasi fermi energy values

are now considered with respect to Conduction Band bottom energy. New sections are

device structure and ext structure:

$device_structure

MOS = .true.

RTD_GaAs = .false.

RTD_GaN = .false.

t_ox = 1.25

well_RTD = 3.4d0

barr_RTD = 3.4d0

$end

$ext_structure

include_ext_structure_file = .true.

name_ext_structure_file = ’prova_struct’

$end

In the first one , the user can select one of three predefined device structures, namely a

Si/SiO2 MOS diode, a GaAs-based RTD , a GaN-based RTD. Depending on the device

selected, a relevant structure file will be read by the code, containing TB parameters

and information about lattice. Then, geometrical parameters are entered, namely oxide

thickness t ox for the MOS or well (well RTD) and barrier (barr RTD) widths (all in

nm) for RTDs. On the ground of these data, the code generates internally the appropri-

ate atomic basis.
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Instead of making use of predefined structures, the user has the option to write and

include his own structure file: in section ext structure, set include ext structure file to

true and specify, after name ext structure file, the name of the user-defined external

structure file. With these settings, device structure section is overridden, and the struc-

ture basis and TB parameters are completely defined by the user through the file

name ext structure file.

2.6.1 External structure file

With the option include ext structure file, the user has to provide, in the ICODE working

directory, also the structure file defined by name ext structure file, together with the file

hetero.in.

The structure file (see also Appendix B) should include the sections related to atom basis

(lattice, device basis) and to TB parameters (onsite energy, states, used TB couplings,

tb couplings, distance dependence), exactly as described before. The only difference is

that states and used TB couplings are now defined in two distinct sections, however

with the same syntax as before. Finally, in the new section top CB energy, the value

CB energy (Conduction Band bottom energy) must be entered. This energy (in eV),

will be the reference for energy scan calculations and should refer, usually, to left and

right bulk layers material.

$top_CB_energy

CB_energy = 1.171

$end
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A Example of hetero.in file

$subject

name = ’tunneling in a Si/SiO2 system’

comment = ’sp3 and sp3s*d TB basis’

$end

# General

#

# Fuzzyequal : if true deviations in distance up to "fuzzyness_in_percent"

# are accepted without begining a new star

# calculate_lattice_only : stop after lattice was read in

# calculate_bandstructure : Calculates the bulk (!) bandstructure for the

# first plane. Desired k-points must be given in a file whose

# name is given in the second program argument

# chatty : 0,1,2,3,4 Specifies how much the program talks to you. Ranges

# from 0 (only what must be said) to 4 (tells you all secrets)

$general

program_version = 1.32

fuzzyequal = .true.

fuzzyness_in_percent = 20.0

calculate_lattice_only = .false.

calculate_bandstructure = .false.
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chatty = 4

$end

# device_structure

#

# MOS : if true MOS structure

# RTD_GaAs : if true RTD structure GaAs/AlGaAs

# RTD_GaN : if true RTD structure GaN/AlgaN

# t_ox : oxide thickness for MOS SiO2 [nm]

# well_RTD : well length in RTD [nm]

# barr_RTD : barrier length in RTD [nm]

#

#

$ext_structure

include_ext_structure_file = .true.

name_ext_structure_file = ’test_struct’

$end

$device_structure

MOS = .false.

RTD_GaAs = .false.

RTD_GaN = .false.

t_ox = 1.25

well_RTD = 3.4d0
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barr_RTD = 3.4d0

$end

# General features of the heterostructure:

#

# calculate_bound_states :

# If true, possible bound states of the system are calculated. (Not yet

# implemented)

# calculate_current:

# Determines if a kII-space and energy integration is performed as

# specified in the tunneling_current structure.

# calculate_special_initial_k:

# Calculates the transmission amplitude for a special kII, and energy,

# as given by special_initial_kII and special_initial_energy.

# If calculate_I_U_character or calculate_current is also true and

# k_II_steps is 1 or zero instead of performing a kII - space integration

# only the kII value as given by special_initial_kII is taken

# calculate_I_U_character:

# If true and calculate_current true the current densities for the range

# of voltage drops given in I_U_character will be calculate. Note that since

# a quadruple integration has to be performed ( dU,dkII^2,dE ) this may

# take a while!

# The kII and energy integration are defined in the tunneling_current

# structure. Note that if k_II_steps <= 1 the kII integration is skipped

$general_heterostructure
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calculate_bound_states = .false.

calculate_current = .false.

calculate_special_initial_k = .true.

calculate_I_U_character = .false.

calculate_kii_scan = .false.

calculate_E_scan = .true.

integrated_E = .false.

integrated_kII = .false.

BEEM_experiment = .false.

special_initial_energy = 4.0

special_initial_kII = 0.0 0.0001 0.0

$end

# Structure for current - voltage characteristics

#

# If calculate_I_U_character is true (above) the program reads in

# this structure and the current densitiy as a function of the applied

# voltage is calculated for the heterostructure.

# The quasi_fermi_energies given in the tunneling_current structure

# below are assumed to be equal on both bulk sides

$I_U_character

start_voltage = 0.02

end_voltage = 2.5

voltage_step = 0.1

$end
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# Informations required to calculate the band structure of the left

# or the right bulk.

#

# left_bulk : If true the program calculates the band-structure of

# plane nr. 1 using primII,prim3L as primitive latt. vec.

# right_bulk : If true the program calculates the band-structure of

# the last plane using primII,prim3R as primitive latt. vec.

# lower_energy_limit, upper_energy_limit : The nr. of bands at gamma-

# point determines the nr. of bands calculated at all

# points of the Brillouin Zone. i.e. if at gamma point

# lower_energy_limit <= E_n1 < E_n2 <= upper_energy_limit

# The bands n1 to n2 are printed at all points of the

# BZ

# k3_file : file containing the k-vectors at which the band-structre

# should be calculated. Format of the file

# nr_of_entries*

# nr_entry* k1 k2 k3

# nr_entry* k1 k2 k3

# .....

# * = not evaluated

# k1,k2 = In plane wavevectors

# k3 = Orthagonal wavevector i.e. in growth direction

# All wavevectors in units of reciprocal prim. latt. vec.
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$bandstructure

left_bulk = .true.

right_bulk = .false.

lower_energy_limit = -5.0

upper_energy_limit = 5.0

k3_file = ’k_GZ_Si.sl8_001.in’

$end

# To calculate the current density in the device (only performed for

# calculate_current == .true.) an integration over the energy interval

# from (quasi_fermi_energy_L-cutoff_energy) to (quasi_fermi_energy_L+

# cutoff_energy) is being performed weighting it the fermi function.

# For each energy an 2D summation over k_parallel is performed with

# k_II_steps in each direction. A possible C_n symmetry along the

# growth axis given by symmetry_around_growth_axis may speed up the

# last summation significantly.

# calculate_current determines if the energy and kII integration is

# performed to get the current density.

# Calculate_three_pole_device specifies if the device to be calcu-

# lated has three and not only two leads. If this

# flag is true, the two variables basis_atom_basis

# and quasi_fermi_energy_B are important.

# basis_atom_basis determines a basis atom that belongs to the

# basis of the three pole device (eg. Transistor)

# quasi_fermi_energy_B gives the fermi energy of the basis (center)
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# plane_symmetry:

# gives the 2D-symmetry the heterostructure posses in growth

# direction. Possible values:

# 0 : No symmetry, full BZ-integration

# 2 : C2, i.e. a 180-degree rotation symmetry along growth axis. The

# in plane prim latt. vec must be of equal length and enclose 180deg.

# 3 : C3, i.e. a 120-degree rotation symmetry along growth axis. The

# in plane prim latt. vec must be of equal length and enclose 120deg.

# e.g. (1,0,-1) and (-1,1,0)

# 4 : C4, i.e. a 90-degree rotation symmetry along growth axis. The

# in plane prim latt. vec must be of equal length and enclose 90deg.

# 6 : C6, i.e. a 60-degree rotation symmetry along growth axis. The

# in plane prim latt. vec must be of equal length and enclose 120deg.

# 7 : C3v, a 120-degree rotation symmetry and three mirror planes that

# contain the basis vectors.

# 8 : C6v, a 60-degree rotation symmetry and six mirror planes that

# contain the basis vectors.

# 9 : C2v, a 180-degree rotation symmetry and one mirror plane that

# lies in the middle between two primitive translations (Diamond-(100) )

# 10 : C4v, a 90-degree rotation symmetry and a mirror plane that

# lies in the middle between two primitive translations (Flourite-(100)),

# fcc-(100);

# temperature: gives the system temperature; It enters only over the

# Fermi-Distribution; Decoherence effects are neglected!

# energy_step: Stepsize for energy integration; the stepsize will be de-
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# crease down to energy_min_step/2 (sometimes down to

# energy_min_steps/4) if the transmissionamplitude is close

# to a peak.

# energy_min_step: Gives the energy difference below which a peak in the

# energy integration is fitted to the lorentz function.

# k_II_steps: Defines the equivalent nr. of points in each direction

# of the projection of the BZ over which the (integrated)

# transmission is sampled. The actual nr. of calculated

# nr. of points can be well below (k_II_steps)^2 if the

# BZ-projection posesses high symmetry.

# sugg. value: 50 [#12]

# adaptive_kII_grid: If set to true. there will be additional gridpoints

# between those given by k_II_steps, which are only

# calculated if a high transmission is nearby.

# sugg. value: .true. (for beasty problems)

# nr_subgrids: Between two coarse gridpoints given by k_II_steps there

# will be sqrt(2)^(nr_subgrids) additional points, but only

# some of them will be calculated. (Only for adaptive_kII

# _grid == .true.) Exponential growth choose not too high!

# sugg. value: 3 (4) [#12 (mio = 3 )]

# Si VB Top : E = 0.0 eV

# Si BC Bottom : E = 1.171 eV (a T = 0 K )

# SiO2 CB Bottom : E = 8.824 eV

# Si-SiO2 CB-offset: dE = 3.15 eV

#
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$tunneling_current

calculate_three_pole_device = .false.

basis_emitter_voltage = 0.0

basis_atom_basis = 38

quasi_fermi_energy_L = 0.0

quasi_fermi_energy_B = 0.0

quasi_fermi_energy_R = 0.0

base_fermi_cutoff = .false.

plane_symmetry = 9

temperature = 300.0

cutoff_energy_diff = 0.180

energy_step = 0.3

energy_min_step = 0.0001

k_II_steps = 1

adaptive_kII_grid = .false.

nr_subgrids = 6

focus_point_only = .false.

focus_point = 0.0 0.0

focus_point_radius = 0.12

$end

34



B Example of structure file

$top_CB_energy

CB_energy = 1.171

$end

# onsite_energies_list (in the order {s,p,d,se} and in eV (every state

# must be given even if unused)

$onsite_energy

"Sil" -2.0196 4.5448 14.1836 19.6748

"SiD" -2.0196 4.5448 14.1836 19.6748

"OxBr" -20.503 -5.703 99.00 99.00

"OxIF" -20.503 -5.703 99.00 99.00

"SiIF" 1.397 4.497 99.00 99.00

"Oxl22" -20.503 -5.703 99.00 99.00

"Oxl23" -20.503 -5.703 99.00 99.00

"Si" 1.397 4.497 99.00 99.00

"Ox" -20.503 -5.703 99.00 99.00

"Oxl34" -20.503 -5.703 99.00 99.00

"Oxl35" -20.503 -5.703 99.00 99.00

$end

# The first two lattice vectors must lie in the plane of the heterojunction.

# The next two define the third primitive lattice vector corresponding to the
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# left and right bulk. The first and the last plane are a basis of each bulk

# material

# Structure of device basis:

# Atom_name Atom_number Plane Insulator? Position(3)

$lattice

primII = 0.5430 0.00000 0.00000

0.00000 0.5430 0.00000

prim3L = 0.00000 0.00000 0.543000

prim3R = 0.00000 0.00000 0.543000

device_basis =

"Sil" 1 1 .false. 0.4764296 0.2057682 -0.50050

"Sil" 2 1 .false. 0.2049289 0.4772689 -0.50050

"Sil" 3 1 .false. 0.0691927 0.0700178 -0.364750

"Sil" 4 1 .false. 0.3406793 0.3415185 -0.364750

"Sil" 5 1 .false. 0.2049289 0.2057682 -0.229000

"Sil" 6 1 .false. 0.4764296 0.4772548 -0.229000

"Sil" 7 1 .false. 0.3406793 0.0700178 -0.093250

"Sil" 8 1 .false. 0.0691927 0.3415185 -0.093250

"Sil" 9 2 .false. 0.4764296 0.2057682 0.0425

"Sil" 10 2 .false. 0.2049289 0.4772689 0.0425

"Sil" 11 2 .false. 0.0691927 0.0700178 0.17825

"Sil" 12 2 .false. 0.3406793 0.3415185 0.17825

"Sil" 13 2 .false. 0.2049289 0.2057682 0.314
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"Sil" 14 2 .false. 0.4764296 0.4772548 0.314

"Sil" 15 2 .false. 0.3406793 0.0700178 0.44975

"Sil" 16 2 .false. 0.0691927 0.3415185 0.44975

"Sil" 17 3 .false. 0.4764296 0.2057823 0.5855

"SiD" 18 3 .false. 0.2049431 0.4772689 0.5855

"OxBr" 19 3 .true. 0.3406934 0.3415185 0.6055

"OxIF" 20 3 .true. 0.0691998 0.2057753 0.6595

"SiIF" 21 3 .true. 0.1907938 0.191619 0.6995

"Oxl22" 22 3 .true. 0.2049289 0.0848246 0.788

"Oxl23" 23 3 .true. 0.2049289 0.3464542 0.788

"Si" 24 4 .true. 0.2049289 0.4772689 0.8805

"Ox" 25 4 .true. 0.3357437 0.4772689 0.973

"Ox" 26 4 .true. 0.0543859 0.4772689 0.973

"Si" 27 4 .true. 0.4665584 0.4772689 1.0655

"Ox" 28 4 .true. 0.4665584 0.0650964 1.158

"Ox" 29 4 .true. 0.4665584 0.3464542 1.158

"Si" 30 4 .true. 0.4665584 0.2156394 1.2505

"Ox" 31 4 .true. 0.3357437 0.2156394 1.343

"Ox" 32 4 .true. 0.0543859 0.2156394 1.343

"Si" 33 4 .true. 0.2049289 0.2156394 1.4355

"Oxl34" 34 4 .true. 0.2049289 0.0848246 1.528

"Oxl35" 35 4 .true. 0.2049289 0.3464542 1.528

"SiIF" 36 5 .true. 0.219064 0.4729768 1.6165

"OxIF" 37 5 .true. 0.3406651 0.487126 1.6565

"OxBr" 38 5 .true. 0.0691573 0.079882 1.7105

"SiD" 39 6 .false. 0.2049148 0.2156394 1.7305
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"Sil" 40 6 .false. 0.4764155 0.4871401 1.7305

"Sil" 41 6 .false. 0.3406793 0.0700178 1.86625

"Sil" 42 6 .false. 0.0691927 0.3415185 1.86625

"Sil" 43 7 .false. 0.4764296 0.2057682 2.002

"Sil" 44 7 .false. 0.2049289 0.4772689 2.002

"Sil" 45 7 .false. 0.0691927 0.0700178 2.13775

"Sil" 46 7 .false. 0.3406793 0.3415185 2.13775

"Sil" 47 7 .false. 0.2049289 0.2057682 2.2735

"Sil" 48 7 .false. 0.4764296 0.4772548 2.2735

"Sil" 49 7 .false. 0.3406793 0.0700178 2.40925

"Sil" 50 7 .false. 0.0691927 0.3415185 2.40925

"Sil" 51 8 .false. 0.4764296 0.2057682 2.54500

"Sil" 52 8 .false. 0.2049289 0.4772689 2.54500

"Sil" 53 8 .false. 0.0691927 0.0700178 2.68075

"Sil" 54 8 .false. 0.3406793 0.3415185 2.68075

"Sil" 55 8 .false. 0.2049289 0.2057682 2.81650

"Sil" 56 8 .false. 0.4764296 0.4772548 2.81650

"Sil" 57 8 .false. 0.3406793 0.0700178 2.952250

"Sil" 58 8 .false. 0.0691927 0.3415185 2.952250

$end

# STATES_AND_COUPLINGS

# Structure of states: Atom_name, used_couplings_list in the the order

# {s p d se}, use a dot for unused couplings
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$states

atom_states =

"Sil" ’s’ ’p’ ’d’ ’se’

"SiD" ’s ’ ’p ’ ’d ’ ’se’

"Si" ’s’ ’p’ ’.’ ’.’

"SiIF" ’s’ ’p’ ’.’ ’se’

"Ox" ’s’ ’p’ ’.’ ’.’

"Oxl22" ’s’ ’p’ ’.’ ’.’

"Oxl23" ’s’ ’p’ ’.’ ’.’

"Oxl34" ’s’ ’p’ ’.’ ’.’

"Oxl35" ’s’ ’p’ ’.’ ’.’

"OxIF" ’s’ ’p’ ’.’ ’.’

"OxBr" ’s’ ’p’ ’.’ ’.’

$end_states

$used_TB_couplings

used_couplings =

"sss" "sps" "pss" "pps" "ppp" "s*ps"

"ps*s" "s*s*s" "s*ss" "ss*s" "sds" "dss" "s*ds"

"ds*s" "pds" "dps" "pdp" "dpp" "dds" "ddp" "ddd"

max_nr_stars = 1

$end_used_TB_couplings
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# Structure of couplings:

# Atom_name1 Atom_name2 Star max_coupling_distance tb_elements_of_used_couplings

# Atom1 Atom2 Star mx_d "sss" "sps"

"pss" " pps" "ppp" "seps" "pses"

"seses" "sess" "sses" "sds" "dss" "seds"

"dses" "pds" "dps" "pdp" "dpp"

"dds" "ddp" "ddd"

$tb_couplings

"Sil" "Sil" 1 0.25 -1.9413 2.7836 2.7836 4.1068

-1.5934 2.8428 2.8428 -3.3081 -1.6933 -1.6933 -2.7998

-2.7998 -0.7003 -0.7003 -2.1073

-2.1073 1.9977 1.9977 -1.2327 2.5145 -2.4734

"Sil" "SiD" 1 0.25 -1.9413 2.7836 2.7836 4.1068

-1.5934 2.8428 2.8428 -3.3081 -1.6933 -1.6933

-2.7998 -2.7998 -0.7003 -0.7003 -2.1073

-2.1073 1.9977 1.9977 -1.2327 2.5145 -2.4734

"Ox" "Si" 1 0.20 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"Oxl22" "Si" 1 0.18 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
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"Oxl23" "Si" 1 0.18 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"Oxl34" "Si" 1 0.18 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"Oxl35" "Si" 1 0.18 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"Ox" "Ox" 1 0.28 0.0000 0.0000 0.0000 0.56 -0.13 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"OxIF" "SiIF" 1 0.130 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"Oxl22" "SiIF" 1 0.165 -3.0000 5.500 7.700 6.0000

-1.4000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

"Oxl23" "SiIF" 1 0.190 -3.0000 5.500 7.700 6.0000

-1.4000 0.000 0.000 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

"Oxl34" "SiIF" 1 0.190 -3.0000 5.500 7.700 6.0000

-1.4000 0.000 0.000 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

"Oxl35" "SiIF" 1 0.170 -3.0000 5.500 7.700 6.0000
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-1.4000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

"OxIF" "Sil" 1 0.17 -3.0000 5.500 7.700 6.0000

-1.4000 0.000 0.000 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

"OxBr" "SiD" 1 0.21 -3.0000 5.500 7.700 6.0000 -1.4000 0.000

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

"OxBr" "Sil" 1 0.21 -3.0000 5.500 7.700 6.0000

-1.4000 0.000 0.000 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

"SiIF" "SiD" 1 0.29 -1.9413 2.7836 2.7836 4.1068

-1.5934 2.8428 2.8428 -3.3081 -1.6933 -1.6933 -2.7998 -2.7998

-0.7003 -0.7003 -2.1073 -2.1073 1.9977 1.9977 -1.2327 2.5145 -2.4734

$end

# Structure of distance dependence:

# Atom_name_1 Atom_name_2 Star# reference_distance[nm] power

$distance_dependence

$end
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